两个波相消之后,能量去了哪里?

两个波相消之后,能量去了哪里?

杂然赋流形丶

题主提了一个非常好的问题,

@中科院物理所 对两列波叠加时能量转移的解释非常清晰,但我猜题主想问的并不是这个;

想象一下,如果有两列相向传播的正弦波,振动彼此相反,当它们叠加在一起时会发生什么?[1]

Optics by Ajoy Ghatak,更清晰的传播过程请看此图

直觉告诉我们,在这一瞬间这两列波会完全抵消,那么振动的能量去哪里了呢?

与此对应的是另一个问题,如果这两列正弦波振动方向完全相同,当它们叠加在一起时呢?

似乎此时的振幅变为原来的 2 倍,而能量则变为原来的 2 倍(能量正比振幅的平方,每个波能量为 E(共 2 个波),振幅加倍后能量为 4E),那么这多余的能量又从何而来


为了尽可能解释清楚这个问题,我们先看一个例子

考虑一个特殊情况,两个沿同一直线传播但方向相反的简谐波为:

其合振动的表达式为

显然这是一个驻波的表达式,它的振幅被

调制,为了有更直观的理解,请看下图

显然在某些时刻两个简谐波叠加的结果是一条水平线,能量好似凭空消失一般。

当然在某些其他时刻,波的振幅被调制成 2 倍,能量好像又突然增加了一样。

是能量守恒定律不再成立了吗?

当然不是,

以电磁波为例,在光学教材里通常都将光强认定为正比于电场强度的平方,但在电磁波中还存在一个磁场方向的振动[2]

这幅图还是参考 wiki 吧

注意电磁场的能量密度为:

对于平面电磁波而言,

回到我们开始的问题,两列相向传播的电磁波,在它们的电场完全抵消的同时,磁场却在另一个方向上加强,这也意味着电场的能量转化成磁场的能量,而总的电磁场能量是不变的

对于电场叠加后增强的情况类似,只是磁场方向完全相反,磁场的能量转化为了电场的能量。

后记

可能有的人看到这里还是感觉到非常困惑。上述只单单讨论了电磁波,至于其他波呢?[3]

譬如一根绳子上的机械波,除了动能它还存在势能,

总能量

,仿照电磁波的讨论你也可以很容易得出总能量是保持不变的。

补充更新

感谢 @杨大耶@yqqschen 提出的好问题,促发了我进一步的思考;

在上述讨论中我们只考虑了两束相向传播的波,但没有考虑同向传播的波。这是因为同向传播的情况更加复杂,这两束波的波源不再独立,彼此间存在相互作用,不能简单地单独讨论它们各自的能量。以绳波(机械波)为例,在已经产生的波的基础上,我还需要将其中一点作为新的波源产生振动,这就势必要考虑原有波的影响,情况就变得更加复杂了。

但是否存在例子讨论两束平面波同向传播呢?

考虑电磁波,若只存在单一光源(避免讨论波源间的作用),通过光路调节是否可能是两束波振动完全相同?

见以下迈克尔逊干涉仪的原理图[4],这是典型的分振幅干涉。通过调节反射镜

的位置,可以调节最终到达接收屏的两束光之间的相位差。

但实际实验中,激光源我们都将它理想化为一个点光源,最终分振幅出的两束光到达光屏上各点的相位差并不相同,由此造成了干涉条纹的产生。在光屏上某点处两束光振动完全相同,所以是亮条纹;在另外一些点处振动完全相反,所以是暗条纹。所以干涉实际上是能量在空间中的重新分布,两束光叠加后加强的能量是来自于其他部分叠加后相消的光的能量。

所以针对他们的问题,我给出的解释是:

两束光同向传播,干涉增强时的能量必定来源于其他干涉相消时的能量。针对光屏上每一点,你都可以将它接收到两束光,局域近似为平面波,那么叠加相长的能量就来自于叠加相消的能量。

如果单一地讨论两束波叠加相涨或相消时的能量转移,我目前尚不能给出满意的解释。如果有大佬有更明晰的解释,欢迎讨论或另开一个回答。

最后再次感谢二位的提问,真理越辩越明,在此过程中我也学习到了很多。